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NUTATIONAL STABILITY OF A DUAL-SPIN SATELLITE

UNDER THE INFLUENCE OF

APPLIED REACTION TORQUES

Peter M. Bainum

ABSTRACT

The nutational stability of a dual-spin satellite under the influence of an applied

reaction torque is analyzed. It is assumed that since the solar paddle attach-

ments to the hub of the spacecraft are not rigidly locked, the effect of the solar

panels can be replaced by a constant reaction torque acting on the hub of the

spacecraft. This could result in the satellite having an equilibrium motion

about an axis displaced from the nominal axis of symmetry. The variational

equations of motion are developed about such an equilibrium position using the

SAS-A spacecraft as a model. Energy dissipation on the rotor as well as the

main body is included. This nonautonomous set of differential equations are

linearized and transformed to an autonomous set using the Lyapunov Reducibility

Theorem. The stability of the kinematically similar system is examined numeri-

cally using representative SAS-A parameters for the case when either pair of

solar panels is assumed to be loosely attached. Stability is verified for small

system nutation angles (0.1 degree) although the time constant associated with

the least damped mode is approximately one order of magnitude larger than that

for the SAS-A system without the influence of the reaction torques.
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PRECEDING PAGE BLANK NK T FILMEDNOMENCLATURE

A, B, C = main body moments of inertia about the x, y, z axes respect

A, BC = composite moments of inertia about the x, y, z axes respect

A (t) = system matrix, appears when linear equations are written i:

vector form

b
i

= unit vectors along the x, y, z axes respectively (i = 1, 2, 3)

= unit vectors fixed to the nominal plane of the undeflected wh

rotating with it

Ci = coefficients occurring in the linear equations

D = system matrix appearing in the kinematically similar syste

equations

H = magnitude of system angular momentum vector, H

Ibi = moment of inertia of main body about the bi axis

IR = moment of inertia of rotor about its b
i

axis

Idi = moment of inertia of the pendulous damper about the bi axi.

K = the restoring spring constant of the damper torsion wire su

KR = the restoring spring constant of the rotor

k = the nutation damper damping (rate) constant

kR = rotor damping constant

Ldi = the applied reaction torque about the bi axis1 
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Lf = the damping torques about the b. axis
fi

e = height of damper plane above x, z plane

M = the mass of the main satellite and the rotor

M = the total system mass

m = the pendulum end mass

mR = the mass of the rotor

r = radial coordinate of a differential mass on the rotor

ro = the distance from the nominal spin (y) axis to the pendulum hinge

point

r
1

= the length of the pendulum

S (t) = bounded nonsingular transformation matrix used to transform

nonautonomous system of equations to an autonomous set

s = spin rate of rotor relative to main body

t = time

x, y, z = principal axes of main satellite

YR = displacement coordinate of dmR from plane of undeflected rotor

disc

vi



= angle between the main body symmetry axis (b2) and the main body

angular velocity vector

az, ax = rotor deflection angles about the b 3 ',bl', axes respectively

/13 8 2 = transformed rotor deflection coordinates in the kinematically

similar system

8, e, p = variational coordinates corresponding to perturbations in w2 , c l,

and w3, respectively, from the equilibrium motion

r = em/M

y = the nutation angle, i.e. the angle between the b2 axis and H

/ = nominal main body spin rate

WrI = angular velocities about the x, y, z axes respectively (i = 1, 2, 3)

= position angle of the projection of dmR on the plane of the undeflected

rotor disc

= nutation damper displacement angle
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Superscript

( )' refers to component in b6' axes system

( )' indicates differentiation with respect to time

Subs cript

bi ii refers to particular main body axes (i = 1, 2, 3)

0 refers to equilibrium value

ss refers to steady state
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NUTATIONAL STABILITY OF A DUAL-SPIN SATELLITE UNDER

THE INFLUENCE OF APPLIED REACTION TORQUES

I. INTRODUCTION

NASA Goddard Space Flight Center is currently directing the design and

development of a series of Small Astronomy Satellites (SAS) whose purpose is

to support orbitally based experiments in modern astronomy. The first of these

satellites, SAS-A, is a dual-spin spacecraft which has the capability of scanning

the entire celestial sphere to determine the relative position and intensity of

X-ray emitting sources with respect to the fixed position of the stars. It is

important that the attitude of the satellite be precisely known and maintained in

order to accurately determine the location of the X-ray emitting sources. The

attitude control system for the SAS-A satellite has been designed and developed

by the Applied Physics Laboratory of the Johns Hopkins University.

An analysis of the attitude motion and stability of such a dual-spin space-

craft with damping only on the slowly spinning main part was reported previously.'

The resulting differential equations of rotational motion when linearized were an

autonomous set of fifth order equations with constant coefficients. Analytical

stability criteria were developed from these equations using the method of

Routh-Hurwitz.

Subsequent to this analysis, it was demonstrated by static and dynamic tests

of the SAS-A momentum wheel that there was some energy dissipation in the

shaft-momentum wheel assembly. A recent investigation 2 incorporated the

effects of momentum wheel damping into the rotational equations of motion for

the SAS-A spacecraft, and analytically considered the attitude stability of such a
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system. Wheel energy dissipation was modeled by assuming the wheel could

flex with two degrees of freedom relative to the hub. The nonlinear attitude

equations derived for small wheel flexural motion were a ninth order nonautono-

mous set. An averaging process was used to determine the zeroth and first

order secular perturbations on the behavior of the system nutation angle. From

this a general analytic stability criterion was established. A numerical evalua-

tion of this criterion using parameters and measured wheel damping data for the

Small Astronomy-A satellite indicated that stability about a zero degree nutation

angle is insured by a factor of 128 under normal operating conditions. Numeri-

cal integration of the nonlinear equations confirmed the analytic results for

special cases.

The SAS-A satellite was launched in December 1970. After initial despin

maneuvers and a command to pulse the nutation damper magnet to a more

optimum damping constant, the nutation angle amplitude was reduced from about

1 degree to approximately 0.10-0.15 degree. Although this is within the mission

requirement of 0.20 degree, it is about an order of magnitude greater than that

predicted by prelaunch computer simulations.3 Several hypotheses which might

explain this discrepancy are currently under investigation. Among these are:

possible periodic fluctuations in solar panel lengths due to thermal expansion/

contraction as the satellite rotates in the sunlight and which could excite nuta-

tions; excessive mass unbalance of the satellite in-orbit configuration, in which

the state of zero nutation angle may not correspond to the lowest energy state,

and where nutation damping may approach a steady-state condition of minimum

energy but with non-zero nutation; and thirdly, since the solar paddle attachments

to the hub of the spacecraft are not rigidly locked, but rather spring-connected,
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the effect of the (loose) solar paddles could be replaced by a constant reaction

torque acting on the spacecraft hub. This could cause the satellite to reach an

equilibrium motion about an axis slightly displaced from the nominal figure or

symmetry axis, thus possibly explaining the anomalous nutational behavior of

the SAS-A system.

This third theory will be the basis for the investigation considered herein.

Although the results will be applied directly to the SAS-A spacecraft, it should

also be of interest to the designers of other dual-spin systems having non-

rigidly connected solar paddles.

II. ANALYSIS

It is a well-known textbook problem that a rotating rectangular plate with a

constant angular velocity can be forced to rotate about a nonprincipal axis of in-

ertia under the influence of a reaction torque which acts about an axis perpen-

dicular to the plate and rotates with it.4 In 1963 Garber studied the stability of

a gravity-gradient stabilized satellite under the influence of a constant disturbing

(reaction) torque.5 He concluded that if this torque were sufficient to produce a

non-zero steady-state pitch (in-plane) motion, it could lead to instabilities in

the roll-yaw out-of-plane motion.5

This idea may be applied to the motion of a spinning satellite with loosely

attached solar paddles; a plausible model is shown in Figure 1. A possible equi-

librium configuration is described by two body-axis components of the spacecraft

spin vector that are non-zero:

3



W2 Q COS a

W1 = (1)

o3 = Q sin a

where a is the angle between the axis of rotation and the desired system spin

axis, and Q is the nominal value of the satellite spin rate.

The equations of motion for an undamped dual-spin satellite system where

the desired axis of rotation is the "y" axis can be represented by:

Bgb2 + wo1 co 3(A- C) Ld2 

Ai1 + (0w2 3 (C - B) - W3IR2S = Ld I (2)

C/~3 + o01o2(B- A) + W1lIR2S = Ld 3

If we calculate the disturbance torque, Ld, necessary to give this system a

forced rotation represented by Equation (1), we find that:

Ld 2 Ld 3 0
(3)

Ld, = Q sin a [Q cos a (C - B) - IR2 SI

The variational equations of motion about the equilibrium motion, Equation

(1), can be developed by assuming:

-= cos a + $

co1 = E (4)

03 = Q sin a + 4 
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and substituting, Equation (4) back into the equations of motion (2). After

linearization, the equations are of the form:

~+C1 = 0 j
+ C2 + C3 = 0 (5)

'+ C4c = 0 j

where

C1 = (A - C) Q sin a/B

C2 = - [(B- C) / cos a + IR2s]/A

C3 = - [(B - C) O sin a]/A

C4 = [(B - A) Q cos a + IR2 s]/C

If the first of Equations (5) is multiplied by C 4 , the third by -C 1 , and the

result added, the linear dependence between 8 and Iq can be established.

C4 S- C 1 = 0 (6)

or

C4 = ClP + C4 5 (0) -C 1 (O0) (7)

where 8 (0), ¢ (0) represent the initial conditions in the variational coordinates.

After elimination of S as a dependent coordinate, the independent variational

equations of motion can be written:

_C2C4 + C_3c_ C 3

+ (CC 4+ C C4 [)C4 8(0) - Cp¢(0)]

(8)

~ + C4' = 0

5



The homogeneous system has the following characteristic equation in the

variable, X,

X2 - (C 2C 4 + C1C 3 ) - 0 (9)

For a boundedness of the motion the roots of Equation (9) must be purely

imaginary, or

C2 C4 + C1 C3 < 0 (10)

Inequality (10) may be expanded to take the form:

B [(A - C) Q sin a] [(B - C) Q sin a]
(11)

+ C [(B- C) F cos a + IR2 SI [(B- A) Q cos a + IR2 SI > 0

Inequality (11) is obviously satisfied for the case of a SAS-type spacecraft where

s >>> [ and approximately 90 percent of the system momentum is contributed

by the rotor.

For non-zero initial conditions in 8 or ¢ it is seen from Equation (8) that

non-zero steady-state values of 3 and ¢b would result, but also that Ecs = 0. It

is clear that, even in the presence of damping, this system would never be

asymptotically stable about the assumed equilibrium motion of Equation (1). Or,

in other words, for small initial perturbations in the variational coordinates,

regardless of the time elapsed, the system motion would never return exactly

to its original equilibrium state.

Up to this point the analysis has considered the forced rotation of a general

asymmetric dual-spin satellite without energy dissipation on either the main

part or the rotor. To consider the motion and stability of this system with
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energy dissipation, first on the main part, and later on both parts of the space-

craft, a specific model for the energy dissipation must be selected. For this

purpose the nutation damping system employed in the SAS-type satellites will

be considered.

The satellite, wheel, and damping systems are illustrated in Figure 2. The

elements of the attitude control system are: (1) the main part of the spacecraft,

essentially a right circular cylinder where the nominal spin axis is the b 2 body

axis, (2) a small momentum wheel or rotor assumed to be connected to the

primary part near its center of mass, and whose spin axis is nominally parallel

to the b2 body axis, and (3) a pendulous-type nutation damper which is attached

to the main part and constrained to move in a plane a distance e above the bl, b 3

plane (determined by the body axes perpendicular to the symmetry axis, b 2).

The damper is hinged about a torsion wire support which offers a restoring

torque in addition to the dissipative torque associated with the damper motion.

The equations of motion for this system under the reaction torque described

above and with energy dissipation on the main body may be expressed:

Bw2 + co1 W3 (A -C) Lf
2

AC1 + 0
2
W

3
(C - B) - W3IRs2 = Ld + Lf (12)

c + aW1 0W2 (B- A) + W1lIR2s = Lf 3

in addition to an equation describing the single-degree-of-freedom damper.

The damping terms, L i, and the damper equation as previously derived 1, can

be expanded to yield the following system of first order nonlinear differential

equations under the assumptions that:
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coi/c 2 << 1, ~1 << 1, J1 < < 1,

Ba2 + cw1 Cw3 (A - C) + mr 1 (r 1 + rO ) 1 = 0

AI + c2cW3 ( C- B) - W 3 R2S - 2mcw2 rl 12 Ldl

CC3 + 1c°2 (B - A) + wlIR2 s - m r + m2 2 rlFl 0
(13)

mr2l - mr 1 Fw 3 + mrl(rO + rl)C 2 + cw2 mr1 ( + M) 1

+ mco
2

r 1 Fc = k - K

where the super-barred composite inertia terms now include the contributions

of the main body, rotor, and the nutation damper.

The linearized variational equations can again be obtained by substituting

Equations (4) into (13) and linearizing, assuming: 8 << 1, e << 1, b << 1. The

following set of linearized equations result:

+ + C1 + C5 1 = 0

+ C2¢ + C3 + C61 = 0
(14)

¢ + C 4 e + C7 ¢ 1 + C 8 q 1 ° 0

$1 + C C 1 + C 1 0 +1 + C 1 1i + C 1 2 / + C 1 3 E = O0

where C1 - C4 have already been defined, after Equation (5). and, in addition:

C5 = mr l (r 1 + ro)/B

C6 = - 2m ( cos a) r1l/A

C7 = - mrlF/C

8



C8 = mr 1 (Q2 cos2 c) F/C

Cg = k/mr2

Clo = K/mr 2 + Q2 cos2 ca (r 0 /r1 + m/M)

C
11 = (r

0
+ rl)/r

1

C 1 2 = /r 1

C 13 = ( cos a)/rl

Again after some algebraic manipulation to eliminate the dependent degree

of freedom, it can be shown that the system characteristic equation corresponding

to the homogeneous linear system can be expressed as:

f(X) = ao0 4 + alX3 + a2X2 + a3k + a 4 = O (15)

where

aO = 1 - C5Cll - C7C12

a 1 = C 9

a 2 -(C 2 C 4 + CLC3 )(1 - C 5C 1 l - C7 C1 2 )

+ (Clo - C8 C 1 2 )

- (-C 2 C 7 - C 3 C s + C6 )(C 13 - C1 Cll - C 4 C1 2 )

a3 = - C 9 (C 2 C 4 + C 1 C 3 )

a 4 = C 2 (-C 4 C 1 0 + C8C13 )

A necessary condition for stability is that all of the coefficients of the

characteristic equation be non-zero and have the same sign. After substituting

9



for the C's, it is found that

a0 = 1 - (m(r0 + rl) 2 /B) - mF 2 /C

and that for the actual SAS-type system the last two terms are much less

than one. Also,

al = C
9

= k/mrl2; al > 0

if nutation damping is present.

a3 = C9(-C 2C 4 - C1 C3 );

if C
o

> 0, the condition that: -C2 C4 -C1 C3 > 0 is the same as inequality

(10) or (11) already discussed.

For a << 1, but not zero, the necessary condition that a4 > 0 can be re-

duced, after some algebra, to:

ro m - mF(ro + rl)(A - C)a
- +- -+ K > - - (16)
r M B - A + IR s/Q B [B - A + I s/] (16)

When a = 0, Ld 1 = 0, and condition (16) is identical to the necessary and

sufficient stability condition (18) of Reference 1.

The condition that a 2 > 0 is automatically satisfied for the case when a = 0,

anda0 > O0. For a << 1, it can be shown thata 2 > 0 whens >>>.O. Fora

not restricted to be small the conditions that: a2 > 0, a
3

> 0, a 4 > 0 are

not as apparent, but could be developed and evaluated numerically.

Wheel energy dissipation has been previously modeled by assuming that the

momentum wheel could have two degrees of flexural freedom relative to the

10



main spacecraft hub.2 Figure 3 describes the momentum wheel deflection

geometry for the assumed small deflections az and ax showing the displace-

ment of a differential mass dmR on the deflected wheel. If it is assumed that the

rotor is attached at or very near to the system center of mass and that the

wheel is homogeneous (such that IR2 = 2 IR ) , together with the previous assump-

tions on the magnitudes of the wo, bI and ~l, the first order nonlinear equations

of motion are obtained 2:

B 2 + c 3lc3(A- C) + mrl(rl + ro) (1 = L2 (17)

A)1 + CW2W3 (C- B) - c3 IR2S - 2mCo2 r1 Fi 1
(18)

+ IR 1 {[Z + (w 2 + s) 2 a] sin st - [ +x + 2 + )2 a] COS st } L 1

C&,
3

+ CWlC2(B - A) + C1IR2 - m + m2r 1 1 (19)
(19)

+ I { [a + (C2 + s) 2 a] COS st + [x+ ( + s) a] sin st} = L3

r2 (1 M - mr-S
3

+ mrl(ro + r1 ) r 2 + C 22 mr,1 (ro + ) 1

(20)

11



IR, az + k a KR + kIR, (2 + s)2] a

+ IR, { [C1 (C)2 + 2s) c03] sin st +[ w3 + (c2 + 2S) (0l] COS st}

IRI ax + kR aX + [YR + IR1 (C2 + S-) 2 ] ax

+ IR { [) 3 + (&2 + 2S) wo] sin st - [ - (02 + 2s) ()3] Cos st}

If it is assumed that L2 = L 3 = 0 and that L = Ldl, Equations (17)-(22) may

be linearized about the equilibrium motion:

2 = cSa + 8, o0 = E, c03 = Sina + ½b

~1 :aZ = ax = 0

to yield in terms of the previously defined constants:

+ C1 E+C5 ¢)1 ° Q (23)

e + C2 + C3 + C6 1 + (IR 1/A) {sin st [ z + (Q cos a + s)2 az]

(24)

cos st [a'x + ( cos a + s) 2 ax]} 0

¢ + C4 e + C7 ¢ 1 + C8 0 1 + (IR/C) { COS S t [az + (Q Cos a + s) 2 a Z ]
(25)

+ sin st [ax + ( cos a + s>)2 ax] } = O

12

(21)

= 0

(22)

= 0

I
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'1 + C91 + C 1, 0 1 + C
1

+ C 1 2 +

C13E = + (26)

az + (kR/IR1) az + [KR/IR, + ( cos a + s) 2 ] az

+ [e - (Q cos a + 2S)q + (Q sin a) 8] sin st

+ [¢ + (Q cos a + 2s)E] COS st = (sin st)f sin a (Q cos a + 2s) (27)

X + (kR/IRI) & + [KR1/IRI + ( COS Ca + s) 2] a

+ [Y + (f) cos a + 2s)E] sin st - [e - (Q cos a + 2s)¢ + (Q sin a)3] cos st

= - (cos st) Q sin a(f) cos a + 2s) (28)

Equations (23)-(28) represent a ninth order non-homogeneous set of nonautono-

mous differential equations. The stability of the homogeneous system could be

analyzed using Floquet theory similar to the treatment of Mingori. 6 The appli-

cation of Floquet theory for this problem would necessitate the use of a digital

computer to study the stability point by point by varying different satellite and

rotor inertia, spin, and damping system parameters in a systematic manner.

Instead of the Floquet analysis the Lyapunov Reducibility Theorem may be

applied to reduce the linear system of differential equations with periodic coeffi-

cients to a kinematically similar system of autonomous differential equations7

This method has been recently employed by Guha in studying the attitude sta-

bility of dissipative dual-spin spacecraft.

13



The homogeneous system of linear nonautonomous differential equations

can be expressed in standard state vector form:

k = A(t)x (29)

where, for this system, A (t) represents a 12 x 12 matrix. According to the

Lyapunov Reducibility Theorem7 ' 8 there is a bounded nonsingular transforma-

tion matrix S (t) with a bounded inverse S - '(t) such that a matrix, D, defined by

the equation:

D = S-'AS - S-1S (30)

is a constant matrix. We can then relate,

x = S(t)y (31)

and obtain the system,

y = Dy (32)

The system of autonomous equations (32), is said to be kinematically similar to

the original system, (29) and has similar stability properties since the charac-

teristic roots of the matrix D are the characteristic exponents of the original

equation, (29). According to a theorem of Lyapunov, every equation with periodic

coefficients is reducible, and the major problem is to determine the bounded

transformation, S (t).

Guha has shown8 in applying this technique to the system considered in

Reference 2, that a suitable transformation of the form of Equation (31) can be

expressed:

14



OJ1 0 0 0 0 1

3 0 1 0 0 0 3

+1 = 0 0 1 0 0 1 (33)

a 0 0 0 cos st sin st /1

ax 0 0 0 sin st -cos st 82

It can be verified that this same type of nonsingular bounded transformation can

be applied to the present system, Equations (23)-(28). The following autonomous,

and kinematically similar system in the variational coordinates 8, e, 8, 1, 9 1,

and ,2' results:

+ + Ce+ C51 0 (34)

+ C2 + C3 + + C6. 1 + C1 5 4 1 + C1 5 32 + C1 6 / 2 0 (35)

+'C4E ,+ C7 1 + C8+1 + C 1 7 /3 1 + C1 8 /81 + C 1 9 2 ° 0 (36)

~1 + C 9 1 + Clo<l + Cll + C,12 + C13 = O0 (37)

P1 + C 2 0 / 1 + C 2 1 8 1 + C 2 2 / 2 + C 2 3 82 + ~ + C 2 4 = 0 (38)

/2 +C 2 0 2 + C21 2 -C 2 23 1 - C2 3/ 1 + e - C 2 4 k +C 2 5 8 = Q sin a(Q cos a + 2s)(39)

where C
1
-C1 3

have been defined previously and, in addition,

C1 4 -2I1R s/A

C15 = IR /A

15



C1 6 = IRI COs a ( cos a + 2s)/A

C 1 7 = IR /C

C1 8 = IR Q COS a(Q cos a + 2s)/C

C19 - 2 IR, S/C

C2 0 kR/ IR

C2 1 (KR/ IRI) + Q cos a (Q + 2s)

C 2 2 2S

C
2 3

k
R

S/I R

C2 4 = COS a + 2 S

C25 sin a

Equation (38) is obtained by multiplying (27) by cos st and (28) by sin st and

adding; Equation (39) is similarly obtained by multiplying (27) by sin st and (28)

by -cos st and adding.

The stability analysis of this system is a standard exercise in linear systems

theory. The stability of the zero solution of the corresponding homogeneous

system may be analyzed by Routh's method. The characteristic polynomial may

be evaluated, and the system stability dependent on the roots of the character-

istic equation all having negative real parts.

16



For the non-homogeneous system, the steady state solution may be obtained

by assuming:

s s = K1 , ess = K 2 , Pss = K3' qlss = K4 ' Pls= K5

and '32, = K6 and substituting back into Equations (34)-(39). It can be seen that:

8 S = C2 4 C2 5 /(C 25 + C2 4 C3 /C 2 ),

C3

and E, s = = l= /2 = 0. An examination of the constants involved

in 8ss and sds indicates that the steady state motion of the kinematically similar

system is bounded.

III. NUMERICAL RESULTS

The characteristic equation was developed for the linear autonomous

homogeneous system corresponding to Equations (34)-(39). Equilibrium values

of a 0 corresponding to the reportedly observed nutation angles of 0.1 degree

and 0.2 degree were calculated as follows:

C Q sin ao
tan) 0 sIR s + B n cos a(40)

where the momentum components are approximated by:

H2 IR2 S + B(Q cos a)

H1 . 0

H3 ~ C (O sin a)

17



since A z A, B - B, and C - C.

Two cases of interest were considered, where, first one pair of SAS-A solar

paddles was assumed to be loosely attached to the hub with the other pair rigidly

connected, and secondly, vice versa. The moments of inertia for the two different

cases are:

Case I

A = 28.11929 kg-m2

B = 17.747422 kg-m2

C = 15.32054 kg-m2

Case II

A = 15.18496 kg-m2

B = 17.74742 kg-m2

C = 28.634496 kg-m2

It is seen that from Equation (40), for Case I, ao = 1055 ' and for Case II, ao =

1°1 ' , for y0 = 0.1 degree; also for y0 = 0.2 degree, ao = 206 ' , and 3049 ' for

CaseIIand I respectively.

The roots of the characteristic equation were calculated for the two cases

using the following nominal SAS-A orbital parameters:

F = 0.453 m.

r
o

= 0.0189 m.

r 1 = 0.1735 m.

m = 0.2451 kg.

I R 2 = 0.011525 kg-m2

IR, = 0.0050799 kg-m2 = IR
3

s = 209.43 rad/sec.

Q = 0.008727 rad/sec.

k

K

*k R

*KR

M

= 5.7 x 10-5 nt-m-sec/rad.

= 5.8 x 10 - 5 nt-m/rad.

= 6.779 x 10-3 nt-m-sec/rad.

= 71.61074 nt-m/rad.

= 114 kg.
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For this system, after elimination of the dependence between coordinates,

similar to Equations (6) and (7), an eighth order characteristic equation results.

The roots were obtained using digital computations with a polynomial root-finder

subroutine on the XDS-9300 computer. The results are summarized as follows

for y0 = 0.1 degree (for y0 = 0.2 degree, changes are observed only in the

third or fourth significant figure):

Real Part Imaginary Part - (Rad/sec)

Case I

-. 37874 x 10-2

-. 8058 x 10 - 4

-. 58874

-. 58843

Case II

-. 38139 x 10-2

-. 4834 x 10-4

-. 58875

-. 58844

±.88380 x 10 -

±.11455

*.27962 x 102

±.44670 x 103

±.88468 x 10-'

±.11374

±.27963 x 10 2

±.4467 x 10 3

It is seen that all of the roots for both cases contain only negative real parts.

The higher frequency modes are essentially the same for the two cases. The

time constant for the least damped mode is about 12,400 seconds (3.44 hrs.) for

the first case and 20,700 seconds (5.75 hrs.) for the second case. This repre-

sents a considerable degradation in the performance of the nutation damping

system about the equilibrium position y0 = 0 previously considered. 1. 2
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The highest frequency mode for the kinematically similar system has the

frequency of 446.7 rad/sec, approximately 2.14 times the wheel relative angular

velocity of 209.4 rad/sec. It should be noted that in the original system the

wheel deflection equations, Equations (27) and (28), have forcing terms on the

right hand side at frequency s = 209.4 rad/sec. The possibility of forced

resonance in the original system might exist, especially as the highest frequency

of the kinematically similar system approaches 2s. This eventuality could be

examined more closely by numerical integration of the system equations.

It has been noted in the SAS-A post launch performance, that in addition to

the somewhat larger nutation angles experienced than predicted by pre-launch

analyses, a noticeable degradation of the nutation damping time constant occurs.

Time constants as large as three hours or more have been observed. 9 While

the present analysis does not claim an exact correlation with the anomalous

observed behavior, it does suggest a possible mechanism for future problems,

especially in connection with high pointing accuracy dual-spin missions.

It has also been demonstrated by computer simulations that external torques

having amplitudes of about 4000 dyne-cm would be necessary to produce nuta-

tional motion of the SAS-A satellite with amplitudes of 0.1 degree. 9 Torques of

this magnitude would be difficult to justify using even conservative aerodynamic

density values at the SAS-A orbital altitude. The magnitude of the reaction

torque, Ld, as given by Equation (3) was calculated for the two cases previously

considered; for Case I, Ld, = -7090 dyne-cm, whereas for Case II, Ld = -3620

dyne-cm. There is a strong suggestion, therefore, that the solar panels and not

the atmosphere are providing the higher amplitude torques associated with the

anomalous nutational motion.
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IV. CONCLUSIONS - CLOSING COMMENTS

Based on the present stability analysis and numerical results the following

concluding comments can be made:

1. The motion of a dual-spin satellite system, under the influence of

applied reaction torques, about an axis of rotation slightly displaced

from the nominal spin axis remains bounded. For small initial per-

turbations, the system, however, is not asymptotically stable about the

original equilibrium state.

2. For the case of energy dissipation only on the main body it is seen that

the necessary Routh stability criteria for this motion are satisfied; for

the general case of damping on both the main spacecraft and the wheel,

stability is indicated by a numerical examination of the roots of the

system characteristic equation of the kinematically similar system.

3. The Lyapunov Reducibility Theorem can be used in studying the stability

of the original nonautonomous system for the case of energy dissipation

on both parts of the dual-spin system.

4. A possible mechanism for the somewhat anomalous nutational motion

and large nutational time constants observed in the post-launch SAS-A

flight data is suggested. For this system it is assumed that the applied

reaction torques would be provided by either pair of non-rigidly attached

solar paddles.
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